
Intersection Movements Delay Modelling Based on Crowd-1 

sensed Global Positioning System Trajectory Data 2 

Adham Badran a*, Ahmed El-Geneidy b, and Luis Miranda-Moreno a 3 

a Civil Engineering Department, McGill University, 817 Sherbrooke Street West, 4 

Montreal, H3A 0C3, Canada 5 

b School of Urban Planning, McGill University, 815 rue Sherbrooke West, Montreal, 6 

H3A0C2, Canada 7 

* Corresponding Author 8 

Contact: adham.badran@mail.mcgill.ca, Department of Civil Engineering, McGill 9 

University, 817 Sherbrooke Street West, Montreal H3A 0C3, Canada. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

For Citation please use: Badran, A., El-Geneidy, A., Miranda-Moreno, L. (2024). 18 

Intersection movements delay modelling based on crowd-sensed global positioning 19 

system trajectory data. Canadian Journal of Civil Engineering.20 



Abstract 21 

Developing accurate large-scale transportation models, used to guide policy adoption and 22 

evaluate infrastructure alternatives or changes in sociodemographic conditions, is data 23 

and resource intensive. This research proposes a novel method for modeling intersection 24 

movement delay using crowd-sensed Global Positioning System (GPS) data. This is 25 

achieved by providing a general definition of turning movements and extracting travel 26 

times thought GPS trajectory data analysis. Additionally, a straightforward method is 27 

proposed to integrate the observed delays per movement type into volume-delay 28 

functions. The spatial definition provided for turning movements captured distinct speed 29 

profiles per turn type. The significant differences in mean speeds for different turn types 30 

highlights the importance of integrating turn penalty functions based on real observations 31 

and underscore the importance of crowd-sensed GPS data. A simple technique is also 32 

proposed to integrate the proposed method into the volume-delay functions used in large 33 

scale transport models.  34 

Keywords: Intersection Delay Model; Macroscopic Model; Turn Performance Function; 35 

Global Positioning System, Transport Planning. 36 

Introduction 37 

Transport models are decision-making tools used to evaluate current system conditions 38 

and propose modifications to it to optimize its performance (Jacyna et al., 2014). They 39 

assist in evaluating the impact of policies, sociodemographic changes, and infrastructure 40 

projects on the transport system (Wegener et al., 1991). Large-scale transport models, 41 

known as macroscopic transport models, consists of three components: i) the supply, a 42 



digital representation of the transport network for all modeled transport modes, ii) the 43 

transport demand, representing all the trips that need to be made, and iii)  the 44 

performance, depicting network conditions when the demand is assigned to the transport 45 

network reflecting the influence of demand on route choice and traffic conditions 46 

(Ortúzar and Willumsen, 2011). Road network performance is usually evaluated by 47 

examining travel time delays on road segments and at intersections (Ledezma-Navarro et 48 

al., 2018, Sun et al., 2014). Delays at intersections originate from two main sources, traffic 49 

signals and turning movements. Turning movement delay at intersections depends on 50 

multiple factors, such as the number of approaches, intersection control type, intersection 51 

size, number of conflicting movements, traffic intensity, presence of dedicated turning 52 

lanes, and traffic signal phasing and timing (in presence of traffic lights)(HCM, 2022). 53 

Acquiring data for all these variables at a regional level is challenging and even more 54 

complex to maintain up to date. Due to the complexity of developing such models, some 55 

modelers rely on major assumptions regarding turn penalty functions that represent turn 56 

movement delays in macroscopic models or use generic penalties that represent turning 57 

movement delays with sufficient accuracy. The impact of these inaccuracies is directly 58 

reflected in the route choice results since the generalized cost is mostly based on delays 59 

or travel times, which can lead to misleading results. This weakness has also been 60 

identified by Abedini (2022) who proposed a data-driven method to calibrate more 61 

accurate link performance functions. 62 

Recently, Global positioning systems (GPS) trajectory data has been collected by GPS 63 

enabled smartphones, creating large databases of GPS trajectories. This emerging data 64 

source has the potential to provide high-resolution and high-coverage information about 65 



the observed motorist’s speed or travel time throughout the road network, offering an 66 

opportunity to improve the current macroscopic modelling practice. The objective of this 67 

work is to demonstrate the potential of crowd-sensed GPS data to accurately model road 68 

intersection turning movement delay, using as a case study dataset from Quebec City, 69 

Canada. It also aims to show how such information can be integrated into large-scale 70 

simulation models to provide more accurate intersection delay functions. This is achieved 71 

through the adoption of a replicable and standardized procedure to calculate the average 72 

speed per turning movement. Average speed is selected since large-scale transport models 73 

are deterministic and represent an average day. This method is not adapted for use with 74 

dynamic traffic assignment models since it does not model turning movement delay as a 75 

random variable. The case study examined in this paper examines the turning movement 76 

delays at traffic signal-controlled intersections of arterial-arterial or arterial-collector 77 

type roads. 78 

Literature Review 79 

Intersection delay estimation and modelling, using GPS trajectory data, has been 80 

addressed in multiple studies (Jiang and Zhu, 2005, Ko et al., 2008, Strauss and Miranda-81 

Moreno, 2017). These studies can be categorized based on the examined transport mode 82 

(car, bus, or bicycle).  83 

Strauss and Miranda-Moreno (2017) conducted a study using crowd-sensed GPS 84 

trajectory data in Montreal, Canada to estimate performance measures at signalized 85 

intersections. They developed models to relate bicycle intersection delays to predictors 86 

such as intersection geometry and built environment. While this work provides detailed 87 

steps in GPS data processing, it confines the analysis to the approach and intersection 88 



levels without exploring detailed intersection movements. Another study by Gillis et al. 89 

(2020) used crowd-sensed cyclist GPS trajectory data to determine road intersection 90 

delays. This research focuses on the main cyclist movements across the intersection and 91 

emphasizes the importance of having an adequate sampling rate to capture details before 92 

and after the intersection. The main limitations of the two studies examining cyclist GPS 93 

data are the fact that they do not consider the impact of traffic flow on delay and that they 94 

do not propose a standardized method to extract delays at the intersection movement 95 

level. 96 

Using real-time bus GPS trajectories, Wang et al. (2016b) proposed a method to predict 97 

intersection delays and bus arrival time. This method, designed for real time use, does not 98 

explicitly consider intersection movements, making it inapplicable for macroscopic 99 

transport models. Another study by Wang et al. (2016a) uses low-resolution transit bus 100 

GPS data to estimate control delays; however, it does not consider turning movements. 101 

In addition, using bus GPS data to estimate control delays cannot be used to represent 102 

the dynamics of the general population of motorists, as it may be biased dur to differences 103 

in vehicle characteristics and the presence of bus stops, which can create additional 104 

delays.  105 

One of the most commonly used methods to estimate intersection movement delays is 106 

proposed by the Highway Capacity Manual (HCM). It combines three models: uniform, 107 

random, and overflow delay models. This method can be seen in the work by Leong (2017)  108 

and requires the collection of signal phasing and timing information, in addition to 109 

intersection configuration. Although this method can yield good results, it requires 110 



significant data collection efforts for large-scale models, limiting its suitability to small-111 

scale models. 112 

Other studies have explored the use of passenger vehicle GPS trajectory data to estimate 113 

delays while reducing data collection efforts and having a satisfying accuracy level. In fact, 114 

a study by Liu et al. (2006) investigated the effect of different GPS trajectory sampling 115 

rates on delay estimation quality and the ability to capture the delay. This study focused 116 

on reducing the cost of real-time data transmission and does not propose a method to 117 

estimate or model intersection movement delays.  118 

In another study, Alkaissi et al. (2021) conducted an experiment by instrumenting a 119 

vehicle with a GPS device to record 50 trips through an arterial corridor. Based on speed 120 

and acceleration, they were able to determine delays at intersection; however, the study 121 

only considered a limited number of trips and did not examine delays from movements 122 

at the intersection.  123 

Intersection delay estimation techniques were examined based on a theoretical 124 

framework of vehicle dynamics. In a study by Jiang and Zhu (2005), a GPS-equipped 125 

vehicle was used to collect trajectory data, proposing a method to calculate the approach 126 

delay. The approach delay is defined as the difference between the actual time for the 127 

vehicle to pass the intersection and the time it would take to pass the intersection at the 128 

driver’s desired speed. This delay can be estimated by measuring various components 129 

such as stopped delay, control delay, approach delay, midblock delay, or segment delay. 130 

A variation of this technique was explored by Hoeschen et al. (2005). However, these 131 

measures remain limited to traffic signal operation applications and only consider delays 132 

at the intersection approach level.  133 



Intersection delay is crucial information for assessing intersection control performance 134 

and determine the level of service (LOS). Tišljarić et al. (2018) estimated intersection 135 

control delays based on GPS trajectory points by locating the first deceleration and 136 

stopping points upstream on the intersection. The information was also used to create a 137 

queuing profile for the examined intersections. However, this technique was limited to 138 

the approach level and the queuing profiles were not compared to ground truth for 139 

validation.  140 

Most Recently, Saldivar-Carranza et. al (2021a) have been using connected vehicle 141 

trajectory data to optimize traffic signal operation. This type of data, also referred to as 142 

internet connected vehicle data (ICV), can include additional information in comparison 143 

to traditional GPS trajectory data, such as hard braking or hard acceleration events and 144 

was also used by Khadka et al. (2022). The purpose of their study was to evaluate queue 145 

length and propagation, and delay estimation on arterials in addition to the generation of 146 

time-speed diagrams by combining the data with available traffic signal timing 147 

information. The increasing availability of ICV data enables the collection of statistically 148 

significant amounts of data in a very short time which helps evaluate the safety conditions 149 

of a specific intersection movement using surrogate measures as demonstrated by 150 

Saldivar-Carranza et. al (2021b). Although studies using ICV data are focusing on traffic 151 

operation optimization and traffic safety evaluation through surrogate measures, they 152 

demonstrate that large scale trajectory data has a great a potential to evaluate traffic delay 153 

related variables at a disaggregate level (ex.: intersection movement). 154 

When studying delay modelling, understanding the level of detail required depends on 155 

the model type and the capabilities available in transport planning and modelling 156 



software to be able to produce results that can be integrated to the modelling tool. 157 

Macroscopic models integrate intersection movement delays differently depending on the 158 

modelling tool used. For example, the Aimsun simulation software divides delay into 159 

three different components: link delay functions, turn penalty functions (TPF), and 160 

junction delay functions (JDF). TPF and JDF are used for traffic signal-controlled 161 

intersections and stop or yield controlled intersections, respectively. The TPF is also 162 

capable of using the programmed signal timing plan to estimate macroscopic level delays 163 

based on green time, cycle duration, and equations provided in the Highway Capacity 164 

Manual. Although this possibility is interesting, integrating and maintaining all signal 165 

timing plans for different time periods and for a whole metropolitan region requires 166 

important resources and is generally not feasible.  167 

Other tools used for macroscopic modelling, such as EMME or Visum also offer the 168 

possibility to add turn penalties for each possible movement at an intersection. However, 169 

the challenge remains in finding the correct values or functions that represent the 170 

observed conditions adequately. Due to limited resources, in practice, this usually results 171 

in the oversimplification of turn delay modelling by assuming fixed generic values or even 172 

by limiting turn modelling to simple turning permissions indicating whether each 173 

movement is permitted or prohibited.  174 

In summary, intersection delay was studied by multiple researchers using GPS trajectory 175 

collected by different transport modes, such as, bicycle, buses, and passenger cars. 176 

Depending on the study objective, delay was defined differently in terms of spatial or 177 

temporal resolutions (intersection level or approach level) to obtain indicators used for 178 

traffic signal control operation and optimization. However, additional work is required to 179 



explore crowd sensed GPS data and develop methods that consider delays at the 180 

intersection movement level without the knowledge of signal phasing and timing or signal 181 

groups. This is essential to model turning movement delays for large-scale models. 182 

Therefore, this work proposes a framework and method to extract intersection movement 183 

delays for use in large-scale transport models from GPS data, avoiding the use of data that 184 

is difficult to obtain or collect.  185 

Methodology 186 

Definitions 187 

Before describing the theoretical framework and the proposed method, it is important to 188 

define a few terms. An intersection turning movement refers to a possible vehicular 189 

movement at an intersection, usually described by the direction and the turn type (Board 190 

et al., 2022). Intersection turn type refers to the maneuver performed at the intersection, 191 

which can be left turn, through movement, or right turn. Although delay and speed are 192 

two different concepts, this work interchangeably uses the two words. Since the proposed 193 

method needs to be applicable to intersections of different dimensions, speed was 194 

calculated instead of delay to eliminate the distance dimension and reduce the bias. This 195 

is important for the proposed method, as it includes the upstream segment travel time in 196 

the delay (speed) calculation. Calculating a typical delay value for all types of intersections 197 

would incorrectly assume that all intersections have the same geometric configurations 198 

and upstream road segment length.  199 

To capture the average delay incurred by a vehicle associated with a given turning 200 

movement and keeping in mind the macroscopic aspect of the transport model, it was 201 

important to have an adequate definition of intersection movements. For each 202 



intersection, an intersection zone is defined as the area containing the road intersection 203 

in addition to all the upstream and downstream road segments that connect the given 204 

intersection to the neighboring intersections (see Figure 1).  205 

Moreover, the start and end points for each movement type (left turn, through movement, 206 

and right turn) are defined as seen in Figure 2. The start point of every movement is the 207 

entrance point of the upstream road segment (LTStart, TStart, RTStart). The movement end 208 

point is the point where the vehicle exits the analyzed intersection (LTEnd, TEnd, RTEnd). 209 

Defining the start and end point of every movement enables the calculation of length of 210 

each of the left, through, and right movements, which are LLT, LT, and LRT, respectively. 211 

This definition makes it possible to differentiate between delays of vehicles performing 212 

different movement types. In a similar logic, the traffic flows for each of the movement 213 

types are referred to as FLT, FT, and FRT, representing flows for left turn, through, and right 214 

turn movements, respectively. Connecting back to macroscopic models, it becomes 215 

possible to adjust turn penalties based on real observations while considering mid-block 216 

traffic delays due to traffic propagation associated with the downstream control type and 217 

turning movement type.  218 

Proposed Procedure 219 

The method proposed by this work uses GPS trajectory points, traffic counts, and a road 220 

network geographic representation to create an integrated database containing, for each 221 

intersection movement, the mean 15-min speed and the corresponding 15-min traffic 222 

count.   Figure 3 presents a summarized diagram of the procedure used to create the traffic 223 

count-speed database.  224 



The yellow boxes represent input data while the grey rectangles represent data processing 225 

steps, and the green cylinder represents the final output database. 226 

The first step consists of spatially filtering the map-matched GPS trajectory data to allow 227 

only relevant data points to be kept and reduce the size of the data base. This step is 228 

required to only keep the required GPS points and avoid working with a large data file. 229 

The second step is to manually select, for each trip segment within the intersection, the 230 

first point (LTStart, TStart, RTStart) and the last point (LTEnd, TEnd, RTEnd). Each trip within 231 

an intersection zone is visually inspected to verify if its start point and end point are 232 

located at an acceptable distance of the theoretical start and end points defined above. 233 

This step is carried out manually and is labor intensive given the large number of trips 234 

per intersection. At the third step, the trip ends’ timestamps and the geographic 235 

coordinates are extracted to create a polyline representing the turn movement of each trip 236 

segment within the intersection. The fourth step connects the trip ends using the shortest 237 

path algorithm over the digital road network. The process allows the elimination of noise 238 

caused by the GPS signal when a vehicle is stationary at trajectory points situated between 239 

the trip ends. This step is carried out using the Network Analyst Extension of the ArcGIS 240 

software which implements Dijkstra’s algorithm to find the shortest path. This algorithm 241 

was deemed suitable since it was able to correctly connect the first and last points of 242 

intersection trajectories. Figure 4 presents the raw GPS data in addition to two sample 243 

trip segments that were manually selected to be processed into a line using the shortest 244 

path algorithm and considered in the delay analysis.   245 

The fifth step consists of using the turning movement trip segment polyline to calculate 246 

the intersection movement length and speed.  247 



The following step, each turning movement trip segment is analyzed to determine the 248 

movement type (left turn, through movement, or right turn) based on the movement’s in 249 

and out directions. A movement type-direction correspondence dictionary is used at that 250 

step to determine the entering and exiting direction for each trip and associate it to the 251 

correct movement type. For example, a vehicle entering an intersection from the south 252 

and exiting from the east is considered a right turn. At the seventh step, mean 15-min 253 

speeds are calculated per intersection movement.  254 

The last (eighth) step is an independent treatment of traffic counts carried out to extract 255 

and prepare traffic count data to be integrated to the mean 15-min speed table.  Therefore, 256 

a traffic count database is created containing detailed 15-min traffic counts for all 257 

intersections per turning movement. This database is integrated to the mean 15-min 258 

speed table based on the intersection ID and the turning movement to create the final 15-259 

min traffic count-speed database. The final database is used to perform exploratory 260 

analysis to gain insight into the different movement types. 261 

Integration to Macroscopic Models 262 

To connect with large scale transport models, a method is then proposed to integrate the 263 

findings to the volume delay functions used in macroscopic simulation models. Assuming 264 

that through movement delays are already included in the link, or road segment, volume 265 

delay function, it is possible to express the turn penalty, seen as an additional delay, as a 266 

function of through movement travel time TT. This assumption is applicable since large 267 

scale transport models are calibrated based on floating vehicles that drive straight 268 

through main road corridors without turning at intersections. This results in link volume 269 

delay functions that integrate road segment and intersection delay for through movement 270 



only (TT in Figure 2). The following are the proposed left turn and right turn penalty 271 

functions based on the observed GPS trajectory data. 272 

(1)       𝑇 𝑇 𝑎 ∗ 𝑇 𝑇 1 𝑎   273 

(2)      𝑇 𝑇 𝑏 ∗ 𝑇 𝑇 1 𝑏   274 

Where TLT, TRT, are the travel times for the left and right turns, respectively, and parameters a 275 

and b are the speed adjustment ratios for left and right turns respectively. These 276 

parameters are calculated using the trajectory length and travel time extracted from the 277 

GPS trajectory points. The parameters a and b are calculated as follows: 278 

(3)     𝑎 1 /

/
  279 

(4)     𝑏 1 /

/
  280 

For macroscopic models, the adjusted travel time for turning movements at intersections, 281 

or turn penalty functions can be considered as follows: 282 

(5)     𝑇𝑃 𝑎 ∗ 𝑇  283 

(6)     𝑇𝑃 𝑏 ∗ 𝑇   284 

Where TPLT and TPRT are the additional delay incurred for left turning vehicles and right 285 

turning vehicles, respectively, with respect to the through movement travel time. The use 286 

of these penalties results in the inclusion of all delays incurred at the intersection for all 287 

turn types.  288 



Case Study 289 

This study is based on data collected in Quebec City, Canada. Three sources of data were 290 

necessary. First, GPS trajectories data was recorded by motorists during the spring of 291 

2014 in Quebec City, Canada. It was collected during 21 days by 2,000 voluntary users 292 

through the Mon Trajet smartphone app, made available by the Municipality. Each point 293 

is described by the following attributes: X and Y coordinates, trip ID, speed, and 294 

timestamp (Year-Month-Day-Hour-Minute-Second). The GPS data had gone through a 295 

preliminary round of preparation and map matching. The second data source, used at 296 

step number 8 of the methodology, is traffic counts collected and provided by the 297 

Municipality of Quebec City. Traffic counts were available for a one-day period per 298 

intersection for 15-min time intervals from 7:00 to 10:00 and from 15:00 to 18:00. These 299 

periods were selected by the municipality to cover peak traffic periods. Finally, the last 300 

data source was a geographic representation of the road network in the form of a shapefile 301 

which was obtained from OpenStreetMap (OpenStreetMap, 2023). Figure 5 presents the 302 

location of the four intersections selected to perform this study. These intersections were 303 

selected based on the road type and the control type. These variables are expected to have 304 

an influence on intersection movement delay and can be obtained with a reasonable 305 

amount of effort for large scale transport models. In this study, traffic light-controlled 306 

intersections were selected, and the road type was limited to arterial-arterial or arterial-307 

collector intersections.  308 

A total of 1400 intersection movements were individually examined and 1136 were found 309 

to be adequate and selected for further analysis. 310 



Results 311 

Considering the four intersections that were analyzed in the case study, a total of 1136 trip 312 

segments (126 left turns, 153 right turns, 857 through movements) were extracted for the 313 

analysis period. The 15-min mean speed was the lowest for left turns at 14 km/h, followed 314 

by the right turns at 17 km/h, and through movement at 21 km/hr. Left turns are typically 315 

face conflicts with the opposite through traffic, requiring sharing of the green phase (with 316 

priority given to the opposite direction). In addition, left turns often conflict with 317 

pedestrian and cyclist users who also have priority over motorists. To mitigate these 318 

conflicts, left turn movements are sometimes given a dedicated protected phase 319 

depending on traffic control design standards. Both situations contribute to the 320 

expectation that left turning movements have often slower travel times with respect to 321 

right. Regarding right turns, generally this movement conflicts with cyclists and 322 

pedestrians (who have priority), and occasionally conflicts with left turns from the 323 

opposite direction, but this is less frequent and less critical. Therefore, right turn delays 324 

are expected to fall between left turn delays and through movement delays. Through 325 

movement generally do not conflict with other movements (except for right turn on red); 326 

however, it’s delay depends on the signal timing design based on traffic flows for all 327 

movements. Thus, observed speeds for through movements are reasonable since they are 328 

expected to be the fastest.  329 

In parallel, the mean traffic count was the lowest for left turns at 33 vehicles per 15 330 

minutes, followed by right turns at 36 vehicles per 15 minutes, and through movement at 331 

77 vehicles per 15 minutes. The final database was used to visualize the frequency 332 



distribution of mean 15-minute speeds and 15- minute traffic counts for each intersection 333 

movement type, as shown in Figure 6.  334 

Further analysis was conducted to examine the relationship between speeds and observed 335 

traffic counts. No evident relationship was found between the two variables. Additionally, 336 

the mean 15-minute speed is relatively volatile, explained by the fact that speed is affected 337 

the intersection’s signal timing, operation mode, and geometric configuration rather than 338 

traffic flow. Additionally, traffic counts and GPS trajectories were not collected at the 339 

same moment, which is not ideal when comparing relatively fine resolution data. 340 

For this case study, “a” and “b” for traffic light controlled arterial-arterial or arterial-341 

collector intersections are calculated using equations 3 and 4 to be 0.33 and 0.19, 342 

respectively. In other words, a left turn movement is 33% slower than a through 343 

movement, considering movement definitions in Figure 2, and a right turn movement is 344 

19% slower than a through movement. These parameters (a and b) represent an average 345 

behavior of the analysis period as estimated using all observations. However, with more 346 

data is available, it is possible to recalculate these parameters per peak period or hour of 347 

the day to increase the accuracy.  348 

Discussion 349 

The large-scale aspect of macroscopic transport models, sometimes referred to as 350 

strategic level models, can benefit from the availability of new sources of data for 351 

calibration. The proposed framework and methodology can process crowd-sensed GPS 352 

data to estimate turning movement delays and integrate them to macroscopic models. 353 

The proposed solution is a balance between the delay estimation methods proposed by 354 



the HCM or by Hoeschen et al. (2005) and Jiang and Zhu (2005), which are data-355 

intensive when the model is very large, and the simplifications imposed to macroscopic 356 

models due to the lack of data and resources. Using GPS trajectory data, it was possible 357 

to develop a standardized method to extract speed information at the intersection turning 358 

movement level. Traditionally, delays were only calculated for operational purposes to 359 

design and optimize traffic signal phasing and timing, therefore, research mostly 360 

examining approach level delay, which is also used for level of service assessment, as can 361 

be seen in the work by Tišljarić et al. (2018).  362 

Using the extracted results, it was possible to determine the frequency distribution of 363 

speeds and traffic counts for each of the turning movement types. These distributions can 364 

eventually serve to calibrate other stochastic transport models through distribution fitting 365 

and sampling variable delays based on the observed mean and variance values. However, 366 

for macroscopic transport models, aggregate speed results were used to propose a method 367 

to include GPS-based delays to turning movements. In fact, the main finding is that left 368 

turn movements for traffic signal-controlled arterial-arterial or arterial-collector 369 

intersections have the lowest average speed compared to through movements and right 370 

turns. In addition, right turns were also found to have a lower average speed than through 371 

movements. This justifies the importance of including turn penalty functions that reflect 372 

this difference in observed speeds, which was the motivation of this work.  373 

The proposed method can be applied to a larger sample of intersections, a larger sample 374 

of GPS trajectories, and for a variety of road types for better coverage of the road network. 375 

The procedure is semi-automated for the moment and will require the automation of 376 

some the tasks to make it feasible to treat many trajectories rapidly. This will also allow 377 



for the inclusion of more GPS trajectories in the analysis allowing for better temporal 378 

coverage.  379 

No clear relationship was found between mean 15-min speeds and 15-min traffic counts. 380 

Although this is explained mainly by the intersection control type, which in this study was 381 

traffic signal control, the fact that only one day of traffic counts was available per 382 

intersection from a different year might contribute to the randomness observed in the 383 

speed-flow chart.   384 

This study controlled for intersection control type and road type. Intersection delay can 385 

be influenced by additional variables such as the number of available lanes, the presence 386 

of dedicated turning lanes, the permission to perform a right turn on red, the number of 387 

conflicts, the type of traffic signal (fixed vs. actuated). Obtaining and maintaining these 388 

variables up to date at a regional level is challenging. However, if any of them is available, 389 

it could be interesting to include it to improve the classification of turning movements 390 

and improve the delay prediction.  391 

Limitations 392 

This work explores a new method to use GPS trajectory data to model turn movement 393 

delay per road type, movement type, and intersection control type for large-scale 394 

transport models. Although it makes use of the emerging availability of GPS trajectory, it 395 

is not without limitations. First, the applicability of the proposed method is to 396 

deterministic static transport models that aim to represent an average situation to be used 397 

for strategic planning and alternative comparison. Therefore, it is not possible to apply 398 

this method to dynamic traffic assignments, further analysis would be required to do so. 399 

Moreover, the case study examined in this work was limited by the available data. The 400 



GPS trajectory data sample, traffic counts availability, and unavailability of ground truth 401 

data were all limiting factors. To cover all  intersection turn types, road types, and control 402 

types, a larger road network should be used in addition to a larger GPS trajectory data 403 

sample. Moreover, a larger GPS trajectory data temporal coverage will enable the 404 

modelling of turning movement delay per time of day to better reflect the variation of 405 

travel time during peak and off-peak periods.  406 

Conclusion 407 

This work emphasizes the need to consider intersection movement delays in macroscopic 408 

transport models. It explores the availability of a new data source that can overcome data 409 

collection challenges, typical in macroscopic models. It also complements the work done 410 

on delay modelling for different transport modes, which focuses on the operational needs. 411 

It was found that crowd-sensed GPS data is suitable to estimate intersection movement 412 

delays at the intersection movement level. The case study examined traffic signal-413 

controlled arterial-arterial and arterial-collector type intersections. Average speeds were 414 

found to be different for left turns, right turns, and through movements, justifying the 415 

importance of considering turn penalties. These speeds were then used to propose a 416 

method to integrate them back into macroscopic transport models to improve travel time 417 

estimation and consequently improve route choice.  418 

The proposed method can be further improved by increasing the automation of the 419 

procedure, allowing for the rapid treatment of many GPS trajectories. This, in turn, will 420 

increase the sample size of the observations and allow to estimate different turn penalties 421 

per peak period or per hour. Moreover, an extension of this work can examine different 422 

methods to address the length variable to ensure that no bias is introduced since different 423 



road segments can have different lengths, which can in turn influence the calculated 424 

turning speed. Furthermore, if more intersection variables are available, such as the 425 

number of lanes, the number of conflicts per movement type, the possibility to turn right 426 

on red, the presence of dedicated turning lanes, or other intersection control variables, 427 

they can be included to classify turning movement to improve turn penalty estimation 428 

accuracy. 429 
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Figures  

 

Figure 1. Intersection Zone Example 

Figure was created using QGIS version 3 and assembled from the following data 

sources: Road Network (OpenStreetMap, 2023), Satellite Imagery (Google Maps, 

2023).  

 

 

 

 

 

 

 



 

Figure 2. Intersection Movement Definitions 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Diagram of Database Creation Procedure 

 

 

 

 

 

 

 

 



 

Figure 4. Sample GPS Trip Points Converted to Lines 

Figure was created using QGIS version 3 and assembled from the following data 

source: Satellite Imagery (Google Maps, 2023).  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. Study Location - Selected Intersections 

Figure was created using QGIS version 3 and assembled from the following data 

sources: Road Network (OpenStreetMap, 2023), Hydrology (Government of Quebec 

Open Data “https://www.donneesquebec.ca/recherche/dataset/hydrographie-cours-

d-eau-surfaciques”, 2023).  

 

 

 

 

 

 

 



 

Figure 6. Frequency Distributions of Mean 15-min Speeds and 15-min Traffic Counts 

 


